An efficient sparse conjugate gradient solver using a Beneš permutation network

نویسندگان

  • Gary C. T. Chow
  • Paul Grigoras
  • Pavel Burovskiy
  • Wayne Luk
چکیده

The conjugate gradient (CG) is one of the most widely used iterative methods for solving systems of linear equations. However, parallelizing CG for large sparse systems is difficult due to the inherent irregularity in memory access pattern. We propose a novel processor architecture for the sparse conjugate gradient method. The architecture consists of multiple processing elements and memory banks, and is able to compute efficiently both sparse matrix-vector multiplication, and other dense vector operations. A Beneš permutation network with an optimised control scheme is introduced to reduce memory bank conflicts without expensive logic. We describe a heuristics for offline scheduling, the effect of which is captured in a parametric model for estimating the performance of designs generated from our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of an Efficient Conjugate Gradient Algorithm for Poisson Solutions on Graphics Processors

Programmable graphics processors have achieved the distinction of being very efficient and cost-effective in terms of floating-point capacity, thereby making it an attractive option for scientific computing. In this paper, we discuss the implementation of the Conjugate Gradient iterative solver on a graphics processor. A Poisson equation is solved with the graphics processor on an unstructured ...

متن کامل

An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems

In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...

متن کامل

Performance Evaluation and Analysis for Conjugate Gradient Solver on Heterogeneous (Multi-GPUs/Multi-CPUs) platforms

High performance computing (HPC) presents a technology that allows solving high intensive problems in a reasonable period of time, and can offer many advantages for large applications in various fields of science and industry. Current multi-core processors, especially graphic processing units (GPUs), have quickly evolved to become efficient accelerators for data parallel computing. They can mai...

متن کامل

Efficient Solution of Elliptic Partial Differential Equations via Effective Combination of Mesh Quality Metrics, Preconditioners, and Sparse Linear Solvers

In this paper, we study the effect the choice of mesh quality metric, preconditioner, and sparse linear solver have on the numerical solution of elliptic partial differential equations (PDEs). We smoothe meshes on several geometric domains using various quality metrics and solve the associated elliptic PDEs using the finite element method. The resulting linear systems are solved using various c...

متن کامل

A Parallel Algebraic Multigrid Solver on Graphics Processing Units

The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the manycore GPU architecture. A performance comparison of the parallel sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014