An efficient sparse conjugate gradient solver using a Beneš permutation network
نویسندگان
چکیده
The conjugate gradient (CG) is one of the most widely used iterative methods for solving systems of linear equations. However, parallelizing CG for large sparse systems is difficult due to the inherent irregularity in memory access pattern. We propose a novel processor architecture for the sparse conjugate gradient method. The architecture consists of multiple processing elements and memory banks, and is able to compute efficiently both sparse matrix-vector multiplication, and other dense vector operations. A Beneš permutation network with an optimised control scheme is introduced to reduce memory bank conflicts without expensive logic. We describe a heuristics for offline scheduling, the effect of which is captured in a parametric model for estimating the performance of designs generated from our approach.
منابع مشابه
Implementation of an Efficient Conjugate Gradient Algorithm for Poisson Solutions on Graphics Processors
Programmable graphics processors have achieved the distinction of being very efficient and cost-effective in terms of floating-point capacity, thereby making it an attractive option for scientific computing. In this paper, we discuss the implementation of the Conjugate Gradient iterative solver on a graphics processor. A Poisson equation is solved with the graphics processor on an unstructured ...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملPerformance Evaluation and Analysis for Conjugate Gradient Solver on Heterogeneous (Multi-GPUs/Multi-CPUs) platforms
High performance computing (HPC) presents a technology that allows solving high intensive problems in a reasonable period of time, and can offer many advantages for large applications in various fields of science and industry. Current multi-core processors, especially graphic processing units (GPUs), have quickly evolved to become efficient accelerators for data parallel computing. They can mai...
متن کاملEfficient Solution of Elliptic Partial Differential Equations via Effective Combination of Mesh Quality Metrics, Preconditioners, and Sparse Linear Solvers
In this paper, we study the effect the choice of mesh quality metric, preconditioner, and sparse linear solver have on the numerical solution of elliptic partial differential equations (PDEs). We smoothe meshes on several geometric domains using various quality metrics and solve the associated elliptic PDEs using the finite element method. The resulting linear systems are solved using various c...
متن کاملA Parallel Algebraic Multigrid Solver on Graphics Processing Units
The paper presents a multi-GPU implementation of the preconditioned conjugate gradient algorithm with an algebraic multigrid preconditioner (PCG-AMG) for an elliptic model problem on a 3D unstructured grid. An efficient parallel sparse matrix-vector multiplication scheme underlying the PCG-AMG algorithm is presented for the manycore GPU architecture. A performance comparison of the parallel sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014